

miniSVS Operating Manual

Document Ref: 06508141a Date: 09 March 2017

This document was prepared by the staff of Valeport Limited, the Company, and is the property of the Company, which also owns the copyright therein. All rights conferred by the law of the copyright and by virtue of international copyright conventions are reserved to the Company. This document must not be copied, reprinted or reproduced in any material form, either wholly or in part, and the contents of this document, and any method or technique available therefrom, must not be disclosed to any other person whatsoever without the prior written consent of the Company.

Valeport Limited St Peters Quay Totnes Devon, TQ9 5EW United Kingdom Tel: +44 1803 869292 e mail: sales@valeport.co.uk Web: www.valeport.co.uk

As part of our policy of continuous development, we reserve the right to alter, without prior notice, all specifications, designs, prices and conditions of supply for all our equipment.

Table of Contents

1.	Introduction	. 3
2.	Sensors	, 4
	2.1. Specifications	4
	2.2. Physical Characteristics	5
3.	Communications	. 7
	3.1. Sampling Modes	. 7
	3.2. Data Formats	. 7
	3.3. Wiring Information	11
4.	Operations	18
	4.1. Power Up	18
	4.2. Stop Command	18
	4.3. Command Echoes	18
	4.4. Pressure Format Commands	18
	4.5. Pressure Tare Commands	18
		19
	4.6. Other Commands	19

1. Introduction

The Valeport miniSVS Sound Velocity Sensor has been designed with the objective of providing high resolution, high accuracy sound velocity data in the most compact package possible. The basic principle of Valeport's Sound Velocity technology is "time of flight"; that is to say, the sound velocity is calculated from the time taken for a single pulse of sound to travel a known distance.

The miniSVS therefore consists of a single circuit board controlling all sampling, processing and communications functions, and a sensor comprising a ceramic transducer, a signal reflector, and spacer rods to control the path length. The two are connected by a single coaxial cable. A titanium housing may be fitted, which provides waterproof protection to a depth in excess of 6000m.

Optionally, a strain gauge pressure sensor may be added to the miniSVS, enabling sound velocity profiles to be obtained. This configuration is used in the SoundBar 2 Digital Bar Checker, where a 100 dBar range transducer is used, but the miniSVS may be fitted with a selection of different range transducers up to 6000 dBar. The pressure option also uses a secondary PCB.

As an alternative option, the miniSVS may be fitted with a PRT temperature sensor.

Note: the miniSVS may have either a pressure or temperature sensor fitted as an option, but not both

2. Sensors

2.1. Specifications

2.1.1. Power

- Requires 8 29V DC input
- miniSVS draws approximately 17mA at 12V DC
- miniSVS with pressure draws approximately 24mA at 12V DC
- miniSVS with temperature draws approximately 20mA at 12V DC

2.1.2. Data Output

Units are fitted with both RS232 and RS485 communications as standard. RS485 is enabled by grounding a pin in the communications lead (refer to Section 4). Protocol is 8 data bits, 1 stop bit, no parity, no flow control.

Baud rate is factory set to 19200. User may choose between 2400, 4800, 9600, 19200, 38400, 57600 or 115200. (Note that fast data rates may not be possible with low baud rates).

2.1.3. Signal Frequency

Single sound pulse of 2.5MHz frequency.

2.1.4. Update Rate

Selected by command – Single output or continuous output at one of the following rates: 1Hz, 2Hz, 4Hz, 8Hz ,16Hz, 32 Hz or 60Hz

The fastest rate possible is determined by the combination of sensors fitted:

	SV only	SV + P	SV + T
Max Data Rate:	60Hz	32Hz	16Hz

2.1.5. Performance

Sensor	Resolution	Range	Overall Accuracy
25mm	0.001m/sec	1375 – 1900m/s	±0.020 m/s
50mm	0.001m/sec	1375 – 1900m/s	±0.019 m/s
100mm	0.001m/sec	1375 – 1900m/s	±0.017 m/s
Pressure	0.01% FS	0 to 100, 500, 1000 or 6000 dBar	±0.05%FS (over -10°C to 40°C)
Temp.	0.001°C	-5 to +35°C (others available)	±0.01°C

Page 5

Carbon Composite Rods:

The carbon composite material used for the sensor spacer rods has been specifically selected to provide 3 features:

a) Excellent corrosion resistance

b) Very high strength

c) Virtually zero coefficient of thermal expansion

This last point is particularly important; accurate sound velocity measurement relies on measuring the time taken for a pulse of sound to travel a known distance. The material selected does not measurably expand over the operating temperatures of the instrument, ensuring the highest possible accuracy at all times.

Size:

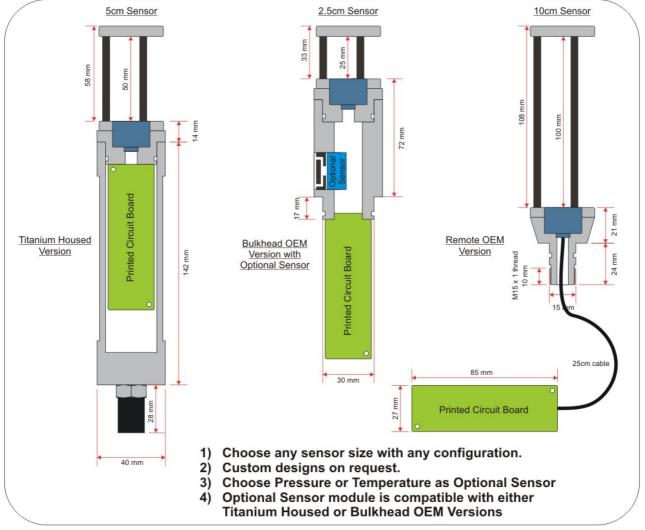
The longer the path length used, the higher the accuracy that can be achieved. It has been found that a signal stability of ± 2 mm/sec can be achieved with a sensor path length of 25mm (overall 50mm path for reflected signal), falling to ± 1.7 mm/sec for a 100mm path (overall 200mm path for reflected signal).

Digital Sampling Technique:


Enables a timing resolution of 1/100th of a nanosecond, equivalent to about 0.5mm/sec speed of sound on a 25mm path sensor, or 0.125mm/sec on a 100mm sensor. In practice, the output is restricted to 1mm/sec resolution.

Linear sensor performance allows easy calibration.

Main housing	Titanium or Acetal
Main bulkhead	Titanium
Space Rods	Carbon Composite
Reflector Assembly	Titanium
SV Transducer	Ceramic transducer behind polycarbonate window.
Signal cable	3mm co-ax cable, nominal 25cm length. Push fit connector.
Pressure Transducer	Stainless steel diaphragm with acetal protective cover.
Temperature sensor	PRT in titanium housing with polyurethane backing.


2.2. Physical Characteristics

© 2017 Valeport Ltd

2.2.1. Dimensions

3. Communications

The miniSVS has 3 different sampling modes, and a selection of data output formats. Each mode is available with each output format.

3.1. Sampling Modes

- Single [data on request]
- Multiple at defined data rates [free running]
- Multiple as fast as possible [free running]

3.1.1. Sampling Commands

S<enter> Demands a single reading to be taken and data transmitted

M <enter></enter>	Unit free runs at fastest data update rate
M1 <enter></enter>	Unit free runs at 1 Hz
M2 <enter></enter>	Unit free runs at 2 Hz
M4 <enter></enter>	Unit free runs at 4 Hz
M8 <enter></enter>	Unit free runs at 8 Hz
M16 <enter></enter>	Unit free runs at 16Hz
M32 <enter></enter>	Unit free runs at 32Hz
M60 <enter></enter>	Unit free runs at 60Hz

3.2. Data Formats

Data output is dependent on the parameters fitted to the miniSVS and the output format selected.

Pressure data format is dependent on sensor range, and may be any of the following. Pressure value is in dBar (abs), and leading zeroes are included, so it is a fixed length string:

PPPP.P (e.g. 1234.5 dBar)

PPP.PP (e.g. 123.45 dBar)

PP.PPP (e.g. 12.345 dBar)

Temperature data format is fixed to a 5 digit string with 3 decimal places. Temperature value is in °C and leading zeroes are included; it is signed only if negative. Examples:

21.456 02.769 -01.174

In the examples below, pressure data is expressed as {pressure} and the temperature data is expressed as {temperature}

3.2.1. Valeport Standard Format

Sets data format to standard Valeport mode (SV in mm/s)
<space>1234567<cr><lf></lf></cr></space>
where 1234567 is the speed of sound in mm/sec[i.e. 1234.567 m/sec]
<space>{pressure}<space>1234567<cr><lf></lf></cr></space></space>
where 1234567 is the speed of sound in mm/sec[i.e. 1234.567 m/sec]
<space>{temperature}<space>1234567<cr><lf></lf></cr></space></space>
where 1234567 is the speed of sound in mm/sec [i.e. 1234.567 m/sec]
<space>{pressure}<space>{temperature}<space>1234567<cr><lf></lf></cr></space></space></space>
where 1234567 is the speed of sound in mm/sec [i.e. 1234.567 m/sec]

3.2.2. Alternative format #2:

#082;2	Sets SV data format to metres per second to 2 decimal places.
SV only	<space>1234.56<cr><lf></lf></cr></space>
	where 1234.56 is the speed of sound in m/s
P + SV	<space>{pressure}<space>1234.56<cr><lf></lf></cr></space></space>
	where 1234.56 is the speed of sound in m/s
T + SV	<space>{temperature}<space>1234.56<cr><lf></lf></cr></space></space>
	where 1234.56 is the speed of sound in m/s
P + T + SV	<space>{pressure}<space>{temperature}<space>1234.56<cr><lf></lf></cr></space></space></space>
	where 1234.56 is the speed of sound in m/s

3.2.3. Alternative format #3:

#082;3	Sets SV data format to metres per second to 3 decimal places.
SV only	<space>1234.567<cr><lf></lf></cr></space>
	where 1234.567 is the speed of sound in m/s
P + SV	<space>{pressure}<space>1234.567<cr><lf></lf></cr></space></space>
	where 1234.567 is the speed of sound in m/s
T + SV	<space>{temperature}<space>1234.567<cr><lf></lf></cr></space></space>
	where 1234.567 is the speed of sound in m/s
P + T + SV	<space>{pressure}<space>{temperature}<space>1234.567<cr><lf></lf></cr></space></space></space>
	where 1234.567 is the speed of sound in m/s

3.2.4. CSV format (SBE CT format)

#000.com	Sate the minic/(s to output in CS)//SPE CT mimic mode
#082;csv	Sets the miniSVS to output in CSV/SBE CT mimic mode

TTT.TTTT,CC.CCCC,SSSS.SSSS,VVVVV.VVV <cr><lf>This format mimics the SBE output format, where:

ттт.тттт	is temperature value
CC.CCCC	is conductivity value
SSSS.SSSS	is salinity value
VVVV.VVV	is sound velocity in m/s

In this format, the miniSVS will substitute zeroes for parameters it cannot measure.

3.2.5. Seabird CTD format

#082;SEABIRD	Sets the miniSVS to output in Seabird CTD mimic mode
--------------	--

TTT.TTTT,CC.CCCCC,PPPPP.PPPP, SSSS.SSSS,VVVVV.VVV <cr><lf>

This format mimics the Seabird CTD output format, where:

ттт.тттт	is temperature value
CC.CCCC	is conductivity value
PPPPP.PPPP	is the pressure value
SSSS.SSSS	is salinity value
VVVV.VVV	is sound velocity in m/s

In this format, the miniSVS will substitute zeroes for parameters it cannot measure. Leading zeroes are replaced with spaces

Note: this output format is only available from firmware version 0650713B5

3.2.6. AML SVT format

#082;AML_SVT	Sets the miniSVS to AML SVT mimic mode	
--------------	--	--

<space>{temperature}<space><space>1234.567<space><space><cr><lf>where 1234.56 is the speed of sound in m/s

In this format, the miniSVS will substitute zeroes for parameters it cannot measure.

3.2.7. MVP format

#082;MVP	Sets the miniSVS to MVP mode	
----------	------------------------------	--

<space>pppp.p<space><space>space><space>tt.ttt<space><cr><lf>

Where

pppp.p denotes pressure/depth

ssss.ss denotes speed of sound

tt.ttt denotes temperature

In this format, the miniSVS will substitute zeroes for parameters it cannot measure.

3.2.8. Sonardyne Format for use with Compatt

#013;on	Sets the unit to Sonardyne format
#013;off	Returns the unit to normal operation

3.3. Wiring Information

This section contains wiring information for all sensor configurations, and includes the standard connector types and the most commonly requested alternatives. If your system is fitted with a connector type not listed here, then the wiring information will be supplied as an addendum at the back of the manual. Be sure to confirm that you are looking at the appropriate information.

Wiring colours are correct at the time the manual was printed. However, it is advised that continuity checks are performed prior to all terminations.

Connections:	

Internal	Co-axial connector to sensor (J3)
	5 – way FCI (power and comms) (J1)
	NB: J2 & J4 are for Valeport calibration and setup purposes – not for use by customer.
External	Standard is SubConn type MCBH6F (In titanium on titanium housings, in brass on Acetal housings)
	Alternatives may be supplied on request
	Wiring Information is in Section 4

3.3.1. OEM Systems

Supplied with a short test lead to enable configuration and testing:

FCI 5 way connector	Wire Colour	Function	9 Way D Type Connector	4mm Banana Plugs
1 (square pin)	Green	Signal / Power GND	5 (Linked to 1,6,8,9)	Black Plug, Green Wire, connected inside 9 way D type
2	Yellow	RS232 Tx (Out of sensor) or RS485A	2	
3	Blue	RS232 Rx (Into sensor) or RS485B	3	
4	Red	+V		Red Plug, Red Wire, connected inside 9 way D type
5		Link to Pin 1 for RS485. N/C for RS232		

3.3.2. Housed Systems (standard SubConn connector)

Systems are supplied with a short (50cm) lead for splicing or testing

SubConn 6 pin male line (MCIL6M)		Function	9 Way D Type	4mm Banana Plugs	
Pin	Wire Colour		Pin	Pin	Wire Colour
1	Black	RS232 GND	5 (Link to 1,6,8,9)		
2	White	RS232 Tx (Out of sensor) or RS485A	2		
3	Red	RS232 Rx (Into sensor) or RS485B	3		
4	Green	+V		Red Plug	Red, linked to Green inside D type
5	Orange	Link to Pin 1 for RS485. N/C for RS232			
6 (Link to pin 1 in sensor)	Blue	Power GND		Black Plug	Black, linked to Brown inside D type

Alternatively systems may be supplied with a test lead connected solely through a 9-way D-type connector.

SubConn 6 pin male line (MCIL6M)		Function	9 Way D Type	
Pin	Wire Colour		Pin	
1	Black	RS232 GND	5 (Link to 6,8,9)	
2	White	RS232 Tx (Out of sensor) or RS485A	2	
3	Red	RS232 Rx (Into sensor) or RS485B	3	
4	Green	+V	7	
5	Orange	Link to Pin 1 for R\$485 N/C for R\$232		
6 (Link to pin 1 in sensor)	Blue	Power GND	1	

3.3.3. Housed Systems (Impulse IE55-12-CCP connector, optional fit only)

Systems are supplied with a free end lead for splicing

Impulse 6 p	oin male bulkhead	Function		
Pin	Wire Colour	Function		
1	Green	RS232 Rx (in to sensor) RS485A		
2	Yellow	Power & R\$232 Ground		
3	Blue	9 – 28V DC input		
4	Red	RS232 Tx (out of sensor) RS485B		
5		N/C		
6		N/C		

NB: RS232 and Power grounds must be linked.

Impulse 6	pin female line	Function		
Pin	Wire Colour	FUNCTION		
1	Yellow	RS232 Rx (in to sensor) RS485A		
2	White	Power & RS232 Ground		
3	Red	9 – 28V DC input		
4	Brown	RS232 Tx (out of sensor) RS485B		
5	Orange	Link to Pin 2 for RS485. N/C for RS232		
6	Blue	N/C		
	Screen	N/C		

Note: Do not connect screen.

3.3.4. Housed Systems (Impulse MHDG-5-BCR connector, optional fit only)

Systems are supplied with a free end lead for splicing

Impuls	se MHDG-5-BCR	Function	Free End
Pin	Wire Colour	Function	Wire
1	Groop	R\$232 Ground	Screen
I	Green	K3232 GIOUIIU	2
2	White / Black	RS232 TX (out of sensor)	3
3	White / Red	RS232 RX (in to sensor)	4
4	Red	+V	5
5	Black	-V (join to pin 1)	6

3.3.5. Housed Systems (SubConn OM8F connector, optional fit only)

SVS Test Cable, 3m Valeport 8-Core Cable.

SubConn 8 pin male line (OM8F + OMBB)	Function	9 Way D Type	4mm Ba	nana Plugs
Pin		Pin	Pin	Wire colour
1	+V		Red Plug	Red
2	-V		Black Plug	Black
3				
4				
5				
6	RS232 RX (In to SVS)	3		
7	RS232 TX (Out of SVS)	2		
8	rs232 gnd	5 (Link to 1,6,8,9)		

139-IPS Extension Cable, 10m Valeport 8-Core Cable.

SubConn 8 pin male line (OM8F + OMBB + DLSB-F)	Function	Subconn 8 pin female line (OM8M + OMBB + DLSB-M)	
Pin		Pin	
1	+V	1	
2	-V	2	
3		3	
4		4	
5		5	
6	RS232 RX (In to SVS)	6	
7	RS232 TX (Out of SVS)	7	
8	RS232 GND	8	

3.3.6. MVP Housed Systems (SubConn Male Bulkhead Connector)

miniSVS instruments built to operate with MVP equipment can be operated in RS232 or RS485 serial comms modes.

In order to operate in RS485 pins 2 to 5 have to be linked. This can be done as a factory build setting and are designated 'Internal' RS485 configuration or as an optional setting externally to the instrument.

3.3.6.1. Internal RS485

Pins 2 and 5 are linked inside the instrument.

Systems are supplied with a short (50cm) lead for splicing or testing

SubConn 6 pin female line (MCIL6F)		Function	15 Way D Type 4mm Banana Plugs		nana Plugs
Pin	Wire Colour		Pin	Pin	Wire Colour
2	WHITE	-V	Join BLACK & WHITE wires in the hood	Black 4mm plug	BLACK
3	RED	+V	Join RED & RED wires in the hood	Red 4mm plug	RED
4	GREEN	R\$485 A	10,12		
1	BLACK	RS485 B	9.11		
2	WHITE	RS485 GND	5		

3.3.6.2. External RS485

For RS485 comms pins 2 and 5 need to be connected at some point within the interface cable.

Systems are supplied with a short (50cm) lead for splicing or testing with no link.

SubConn 6 pin Female Line (MCIL6F)		Function	15 Way D Type	4mm Banana Plugs	
Pin	Wire Colour		Pin	Pin	Wire Colour
2	WHITE	-V	Join BLACK & WHITE wires in the hood	Black 4mm plug	BLACK
3	RED	+V	Join RED & RED wires in the hood	Red 4mm plug	RED
4	GREEN	RS232 Rx (into sensor) or RS485 A	10,12		
1	BLACK	RS232 Tx (out of sensor) or RS485 B	9.11		
2	WHITE	RS232 / RS485 GND	5		
5	Orange	RS485 Enable	Link to 5*		

*or in the mating SubConn link pin 2 to pin 5

Note: RS485 A/B is not formally specified. If data cannot be read successfully it may be that the RS485A/B need to be swapped

4. Operations

4.1. Power Up

There are two power up modes. The unit will either immediately begin running in the previous sample mode, or will immediately send a '>' character, and wait for a command. There needs to be a delay of at least 500ms before sending the first command. In both cases, the data format will remain as that previously used.

#092 <enter></enter>	Reads start up mode
#091;ON <enter></enter>	Readings at last rate at start up
#091;OFF <enter></enter>	No readings at start up

4.2. Stop Command

The unit can be stopped at any time by sending the '#' character. The unit returns a '>', and waits for a further command.

4.3. Command Echoes

Each command character is immediately echoed back <Enter> is echoed back as <cr><lf>

4.4. Pressure Format Commands

#083;0	Turns pressure sensor off and unit reverts to SV only operation mode
#083;1	Sets pressure data format to 1 decimal place
#083;2	Sets pressure data format to 2 decimal places
#083;3	Sets pressure data format to 3 decimal places
#018;0	Sets units to dBar
#018;1	Sets units to Metres
#018;2	Sets units to Feet
#019	Read Pressure Units

4.5. Pressure Tare Commands

#011;on	Turns Tare mode on (i.e. unit subtracts fixed value from pressure data)
#011;off	Turns Tare mode off (i.e. unit outputs pressure as read)
#009;	Unit takes single pressure reading to use as Tare value.
#009;0	Sets Tare value to zero (i.e. removes tare)
#009; {value}	Input Tare value in units of 0.001dBar (i.e. 9000 = 9dBar)

4.6. Other Commands

#059;{baud_rate} <cr> e.g. #059;19200</cr>	Sets the units baud rate. Options are 2400,4800,9600,19200,38400,57600,115200
#031;raw	Sets data output to raw format (time of flight in 100ths of nanoseconds)
#031;cal	Sets data output to calibrated format (sound velocity in mm/sec). Unit always starts in cal mode from power on.
#001;nn	Sets RS485 address (01 to 99)
#005;ON or OFF	Turns Address mode ON or OFF
#006	Returns ON or OFF for address mode
#026;{xxxx}	Sets data separator for Valeport mode. Default is <space>, separator may be up to 4 characters.</space>

5. Appendix 1: FAQ's

Why is the Data Different From My Old CTD Data?

Quite simply, the Valeport SV sensor is more accurate than anything else that has previously been available. The CTD formulae (Chen & Millero, Del Grosso etc.) all have errors in them – they were after all based on observed data taken over 30 years ago using the best technology available at the time. The Valeport SV sensor simply highlights those errors. This does raise an interesting point – if it is more important to you that your data is consistent with old data, rather than accurate in its own right, then you are possibly better off using a CTD (we would suggest a Valeport CTD, naturally).

How is it so Accurate?

Several reasons. Primarily, we use an advanced digital signal processing technique that removes virtually all noise from the data, tells us the precise moment that the sound pulse is both transmitted and received, and allows us to measure the time of flight with a resolution of 1/100th of a nanosecond (10-11 seconds). Secondly, we have developed a carbon composite material that doesn't expand or contract with temperature, so our "known distance" is a constant. Technically, the material will expand and contract minutely, but over the operating temperatures of the probe, it is an almost immeasurably small amount, and any change is included in our overall error budget. Finally, our calibration method removes virtually all of the error sources associated with other techniques.

But Don't you Just Calibrate it Against Chen & Millero?

No we don't – that would defeat the purpose. While the seawater formulae (Chen & Millero, Del Grosso etc.) have inherent errors that are accepted as being at best ± 0.25 m/s, we use a different formula to calibrate the sensor. Del Grosso also published a formula for speed of sound in pure water (with Mader, 1972), which is much more accurate. In pure water, the only variable that can affect sound velocity is temperature (assuming that you are at atmospheric pressure in a laboratory environment), rather than both temperature and Salinity with the seawater equations. The Del Grosso & Mader formula therefore has an error of just ± 0.015 m/s. By calibrating against this rather against the error-filled seawater equations, we can achieve significantly better performance.

Is a Pure Water Calibration Valid?

Absolutely – the purpose of a calibration is just to compare (and adjust) the sensor output against a known standard – it doesn't really matter what that standard is, as long it is precisely defined. Our standard happens to be pure water because it is the most accurately defined standard available.

How Often Does a miniSVS Need Calibrating?

The SV sensor itself is remarkable stable. Since the entire timing system is digital, it is not subject to the drift that analogue components often exhibit over time. The only part of the system that can drift with time is the timing crystal itself. This is typically less than ±0.005m/s in the first year, and less than ±0.002m/s in subsequent years. We quite confidently say that the SV sensor should remain within specification for several years. However, the temperature and pressure sensors (if fitted) do exhibit greater drift with time. It is our experience that in the majority of cases, performance can be maintained by recalibrating at 2-yearly intervals. However, we are aware that many operators' own QA requirements state annual recalibration, and it is true that most instruments are returned to us on a yearly basis.

What is the Response Time?

Virtually instant – the sound pulse takes a matter of microseconds, and the measurement is made using just one pulse.

The Sensor Outputs Zero Sometimes – Why?

The sensor outputs zero when it doesn't record the returning sound pulse within the expected time frame (a time frame that equates to 1375 – 1900m/s in terms of sound velocity). The most common occurrence of a zero value is when the sensor is in air, but it can also happen if the probe has been dropped into a soft bed and is covered in mud or sediment. This will normally wash off during the up-cast. It can also happen if the sensor has been deployed for some time without cleaning, and there is significant growth on the sensor.